LIST OF ILLUSTRATIONS (Continued)

Figure		Page
75.	Stress Pattern in Container II at 500 F	234
76.	Design Stress Pattern in Container III at Room Temperature	237
77.	Geometry of Ring Segment	240
78.	Bending Deformation of Ring Segments	244
79.	Geometry of Pin Segment	244
80.	Loading of Pin Segment	244
81.	Loading of Pins	245

LIST OF TABLES

Table

a

*

XLI.	Torsional and Triaxial Fatigue Data on Vibrac Steel	•	164
XLII.	Fatigue Strengths of High-Strength Steels From Room- Temperature Rotating-Beam Tests, $\alpha_m = 0$		166
XLIII.	Fatigue Strengths of High-Strength Steels From Room- Temperature Push-Pull Tests, $\alpha_m = \alpha_r $		166
XLIV.	Fatigue Strengths of High-Strength Steels From Push-Pull Tests at Elevated Temperatures		167
XLV.	Results of Computer Code MULTIR for Example Design 1 $\$		206
XLVI.	Elevated-Temperature Data for 18 Percent Nickel Maraging Steel and H-11 Steel		212
XLVII.	Liner-Bore Stresses and Interfaces for a 6-Inch-Bore Multiring Container With K = 8.5, N = 5, $k_1 = 2.0$, $k_n = 1.44$, $n \ge 2$, $\alpha_r = 0.5$, and $\alpha_m = -0.5^{(a)}$.		213
XLVIII.	Liner-Bore Stresses and Interferences for a 6-Inch-Bore Multiring Container With K = 8.5, N = 5, $k_1 = 2.0$, $k_n = 1.44$, $n \stackrel{>}{=} 2$, $\alpha_r = 0.5$, and $\alpha_m = -0.3^{(a)}$		214
XLIX.	Prestresses Developed in the Container Assembly at 80 F and 500 F		221
L.	Stresses Resulting Solely From an Internal Pressure of 250,000 Psi		221

LIST OF TABLES (Continued)

	Page
LI. Compositions, Heat Treatments, and Hardnesses of the Components Used for Container I	226
LII. Safety Factors Estimated for the Components of Container I for Various Operating Conditions	227
LIII. Safety Factors Estimated for Liner, Sleeve 1 and Sleeve 2 of Container II for Various Operating Conditions	235
LIV. Composition, Heat Treatment, and Hardnesses of the Components Used for the Four-Ring Assembly of Container III	238
LV. Stresses and Deflections in a Ring Segment, $k_2 = 2.0$, $\alpha = 60^{\circ}$, $\nu = 0.3$	242
LVI. Deflections in Ring Segments, $\nu = 0.3$	243
LVII. Stresses and Deflections in a Pin Segment, $k_2 = 4.0$, $\alpha = 60^{\circ}$, $\nu = 0.3$.	249
LVIII. Displacements and Maximum Hoop Stresses in Pin Segments, $\nu = 0.3$.	251